Environmental Flow Basics Freshwater Inflow to Matagorda Bay

Bryan Cook Supervisor, Water Quality

Overview

- Matagorda Bay
- History of changes
- Importance of Freshwater Inflow
 - Nursery
 - Habitat & Focal Species
- Freshwater Inflow Needs Studies
- Matagorda Bay Health Evaluation

Matagorda Bay

- 2nd largest estuary in Texas
- Commercial Fishery
 - Shrimp
 - Crab
 - Oysters
- Recreational Fishery
 - Red Drum, Speckled Trout

Sources of Freshwater Inflows to Matagorda Bay

Average Historical Inflow = 2.9 mil. ac-ft/year

Importance of Freshwater Inflow

- Estuaries are a nursery for many species
 - Lower salinity than seawater
 - Habitat provides protection from predators
 - Provide nutrients and food
 - Sediments build and nourish habitats
- Timing and Magnitude of inflows are important
 - Many species life cycles are timed to inflows

History- Colorado

- Pre 1900- no land barrier between East and West Bay
- 1920's- major log jam in river removed
- 1930's- land bridge forms- Colorado River diverted to the Gulf
- 1992-river diverted into the bay

History

Habitat

Focal Species

- Finfish
 - Atlantic Croaker
 - Striped Mullet
 - Gulf Menhaden
 - Black Drum
 - Red Drum
 - Flounder

Focal Species

- Shellfish
 - Blue Crab
 - Oysters
 - White Shrimp
 - Brown Shrimp

Migration

Seasonality

Seasonality

Salinity Suitability – White Shrimp

Habitat

Biology Summary

- Inflows create nursery
- Many species use estuary seasonally
- Juveniles of many species have salinity preference
- Oysters depend on freshwater
- The FINS and MBHE incorporate these concepts

MBHE

- Flow regime focused study
- Hydrology
- Salinity
- Habitat
- Nutrients

MBHE Inflow Regime

Category	Habitat Condition	Achievement
MBHE 4	Select	35%
MBHE 3	Good - Fair	6o%
MBHE 2	Fair - Poor	75%
MBHE 1	Poor	90%
Threshold	Refuge	100%

Lavaca Bay

- Receives Inflows from many sources
- Lavaca River, Navidad River, Garcitas Creek
 - Cox Creek, Chocolate Bayou, Placedo Creek
- Supports commercial and recreational fishery
- Oysters identified a key species in estuary

Oysters

- Keystone estuarine species
- Sensitive to prolonged drought

Oyster Suitability

Lavaca Bay Inflow Components

Inflow	Description	Salinity (ppt)
Components		
Subsistence	Maintain oyster habitat suitability of 50%	≤30
Base low	Maintain oyster habitat suitability of 75%	≤25
Base medium	Maintain oyster habitat suitability of 90%	≤22
Base high	Maintain oyster habitat suitability of 100%	Between 10 and 20

Flow Regime	Total Annual Flow Volume (Acre-Feet)	Achievement Guideline
Subsistence	30,000	95%
Base Low	122,400	60%
Base Medium	284,400	50%
Base High	496,800	35%